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Abstract: Development and research in cryptography has 
shown that RSA and Diffie-Hellman has is becoming more 
and more unsafe and Elliptic curve Cryptography is becoming 
a new trend in future for public key cryptosystem. The safety 
level of ECC with small size key is same as that of earlier 
cryptosystem with large size key. In this paper Nicolas 
Meloni’s,2 2012 springer algorithm for addition of points on 
elliptic curve is combined with multibase concept and set 
generation given in “on-the-fly multi-base recoding for ecc 
scalar multiplication without pre-computations” by thomas 
chabrier  and arnaud tisserand  to improve the speed of the 
scalar multiplication.In this paper by combining the multibase 
and Zeckendorf concept number of multiplications and 
squarings are reduced on the cost of addition. Comparative 
analysis of proposed algorithm and some previous approaches 
is also discussed in last section. 
Index Terms— Elliptic curve, Public Key Cryptosystem, 
Scalar Point multiplication, Zeckendorf representation 
 

1 INTRODUCTION 
Elliptic curve Cryptography was first introduced by Neal 
Koblitz and Victor Miller independently in 1985 their 
papers [1] and [2]. These years, research was done to 
improve the efficiency of ECC by improving the efficiency 
of scalar point multiplication which is main operation in 
ECC. Scalar point multiplication means computing the 
point nP=P+P+…+P (n times), where n is a positive integer 
called scalar and P is a point on elliptic curve .Elliptic 
Curve Cryptography has made the great progress in field of 
cryptography and public key cryptosystems. In ECC we use 
points on elliptic curve public keys [19]. It is based on 
scalar point multiplication instead of multiplication of large 
prime numbers.The key length of ECC is small as 
compared to RSA for same level of security. In section 2 
preliminaries are discussed. In section 3 some related work 
is discussed. In section 4 proposed combined algorithm is 
discussed and in section 5 comparisons of previous 
approaches and proposed approach is discussed with tables 
and figures.  
 

2 PRELIMINERIES 
2.1 Elliptic Curve  
Elliptic Curve Cryptography (ECC) is based on a finite 
group of points on an elliptic Curve. The equation for ellip-
tic curve over infinite fields [8][17][18]. 
y2=x3+ax+b. 
2.2 Point Addition in Elliptic Curve 
Point addition is defined as taking two points along a 
curve E and computing where a line through them inter-
sects the curve. We use the negative of the intersection 
point as the result of the addition [8][12]. 
The operation is denoted by P+Q=R 

It can be calculated as:- 
m=y2-y1/x2-x1 
x3 =m2-x1-x2 
y3 = -y1+m(x1-x3) 
Where x3, y3, x2,y2 x1 ,y1  are coordinates of R,Q,P respec-
tively. According to formula cost of point addition is 
2M+1S+1I+6AS where M is multiplication S is squaring I 
is inverse and AS is addition/subtraction. 
 
2.3 Point Doubling in Elliptic Curve 
Point doubling is similar to point addition, except we take 
the tangent of a single point and find the intersection with 
the tangent line. This is represented by R= 2P [8][12] 

m=3x1
2 + a/2y1  

x3 =m2-2x1 
y3=-y1+m(x1-x3) 

According to formula cost of point doubling is 
5M+2S+1I+4AS where M is multiplication S is squaring I 
is inverse and AS is addition/subtraction.  
 
2.4 Zeckendorf Representation 
Zeckendorf theorem states that a number can be represent-
ed as sum of fibonacci numbers.  
Example:- 16 is not in Fibonacci series. 
16 can be written as 13+3 .Here 13 and 3 are in the fibo-
nacci series. 
Example:-4  

Fibonacci series 1,2,3 
3<4 So 3 will be used. Set bit corresponding to 3 =1 
Now 4-1 =1 is left  
2>1 So bit corresponding to 2 set to 0 
1=1 so bit corresponding to 1 set to 1 
Representation of 4 will be = 101 
 

3 BACKGROUND 
Scalar point multiplication is the main operation in ECC. 
Initially it was done by double and add algorithm. It was 
using binary representation of number. For calculating  kP 
only doublings and additions were required. Eg for calcu-
lating 5P= ((2(2P)) +P) 2 doublings and 1 addition are re-
quired. 
Number of additions required according to double and add 
were n-1 where n is number of 1’s in binary representation 
of scalar and number of doublings required were L-1 where 
L is length of binary representation. 
Various representations were introduced to reduce the cost 
of scalar multiplication. Some of these are discussed in this 
section. 
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3.1 NAF Representation 
We know that the binary representation of any number is 
unique and consists of two digits 0 or 1 [3]. However, if we 
use negative number too, in the representation then there 
exist infinite number of representations for a number hav-
ing different lengths and density.Density means the number 
of non - zero digits. Inclusion of negative digits in the rep-
resentation leads to requirement of inverse.  In case of El-
liptic curves inversion of a point is very simple, i.e. just the 
negation of the Y- co-ordinate, in case of primary field or 
addition of X and Y coordinate in case of binary fields. 
These operations are very low cost and can be neglected. 
Out of all such representations, there exist exactly one rep-
resentation in which there are no consecutive non zero dig-
its [9]. This representation is known as the NAF representa-
tion and is important because it puts an upper bound on the 
density of any l- bit scalar k. The Non Adjacent Form 
(NAF) representation of a number consists of three digits 0, 
1 or -1. The representation ensures that there cannot be any 
two or more contiguous non zero digits in the representa-
tion. As an example, suppose k = 15, in the computation of 
kP. Binary representation of (15)10 is (1111)2, while if we 
permit negative numbers then k can be represented as either 
of these: (100-11)2or (10-111)2, (1000-1)2, and so on.  Of 
these forms, (1000-1)2   satisfies the condition that there are 
no two consecutive non zero digits. Thus, it is a NAF rep-
resentation for k. It can be noticed that in this representa-
tion, four doubling and only 2 addition operations are re-
quired, while in case of binary representation, 3 doubling 
and 4 addition operations would be required. Thus, NAF 
representation can reduce the computational cost. [3] 
 
3.2 w-NAF Representation 
  The NAF representation ensures that there can be no two 
consecutive non zero digits. Or in other ways, NAF repre-
sentation ensures that in any two consecutive digits, there 
can be at most one non- zero digits. This idea is further 
extended in w-NAF representation [4][9]  that ensures that 
there can be at most one non zero digit in any consecutive 
w digits in the representation. w-NAF representation is also 
a radix-2 representation system and was given by Cohen, 
Miyaji and Ono. Thus for NAF representation, width of the 
window can be considered to be equal to 2. With increase 
in w, the density of non- zero digits decreases, and thus, the 
number of additions also decreases. 
A width w-NAF representation uses the digit set B = 
 {0, ±1, ± 3, ± 5, ± 7,... ± 2w-1-1} 
This requires 2w-2 pre computed points. 
 
3.3 Multibase Non-Adjacent Form (mbNAF) 
The NAF representation ensures that there can be no two 
consecutive non zero digits. This idea was further extended 
using base set instead of using single base. 
This further reduces the length of representation and densi-
ty of non-zero digits. This reduced the cost of scalar point 
multiplication[5]. 
 
3.4 New Point Addition Formulae for ECC Appli-
cations by Nicolas Meloni1,2 
In this paper a new representation is used for representing a 

number called Zeckendorf Representation. For calculating 
kP Zeckendorf representation of k is calculated, then algo-
rithm discussed in reference [6] is used.  
This algorithm is used in calculating intermediate multipli-
cation in proposed approach. 
In proposed approach multibase concept [20] is combined 
with this algorithm. 
 

4 PROPOSED ALGORITHM 
In proposed approach Zeckendorf representation is com-
bined with multibase concept.First by using Algorithm 1 
Sets are generated [20]. After generation of sets point mul-
tiplication is computed by Algorithm 2. Algorithm 2 will 
call two algorithms 2(a) and 2(b). Algorithm 2(a) is used to 
obtain the Zeckendorf Representation and 2(b) is used to 
calculate intermediate point multiplication using only point 
addition [6]. 
Some Notations used:- 
Bases the multi-base set S with n base elements (bs1, bs2, 
bs3… bsn) (co-prime integers) 
Set B  this is union of terms in form of (d, b1, b2, b3….bn) 
Where n is number of bases. 
 
Algorithm 1 
 Generate_set (k,S) 
Input : k ,base set S=(bs1,bs2,bs3… bsn) 
Output: B 
1. B=Null 
2. While k>1 
3. { 
4. If(k%bs1=0 or k%bs2=0….. or k%bsn=0) 
5. d=0 
6. else  
7. d=1 k=k-1 
8. for(j=1 to n)// n is number of bases 
9. { 
10. bj=0 
11. while(k%bsj==0) 
12. { 
13. bj= bj+1 
14. k=k/bj 
15. } 
16. B=B union (d,b1,b2,…bn)}}  
Example:- K=101 S=(2,3) 

 
B={(1,2,0),(1,3,1)} 
 
Algorithm 2 
Computation of multiplication 
Generation_multiplication (B,P) 
Input:- Set B and Point P 
Output : kP 
1. Q=0 
2. For each term in B 
3. { 
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4. Q= Q + d*P 
5. For j=1 to n 
6. { 
7. Arr[]=Zeckendorf(bsj bj   ) 
8. P=fib_add(Arr,P) 
9. } 
10. } 
11. Q=Q+P 
12.  

 
 
Algorithm 2(a) 
Algorithm to obtain Zeckendrof Representation 
Zeckendorf (int n)     
Input: scalar n= (bs bi) 
Output: Zeckendorf representation of scalar n 
Var j, s, F [1000] , bit[n] n is number of bases,sum 
1. Initialize F[1]= 1 
2. F[2]=2, j=2 
3. Sum=2 s=1 
4. While (F[j]+F[j-1]<=n and n>2)// Generating Fib-
onacci series upno number <=n 
5. { 
6. sum= F[j]+F[j-1] 
7. j=j+1 
8. F[j]=sum 
9. } 
10. for( k=j;k>=1;) 
11. { 
12. If(n==F[k]) 
13. { 
14. s=s+1 
15. bit[s]=1 
16. for(ss=k-1;ss>=1;ss--) 
17. s=s+1 bit[s]=0 
18. k=k-1 
19. } 
20. Else if(n>F[k]) 
21. { 
22. n=n-F[k] 
23. s=s+1 
24. bit[s]=1 
25. k=k-1 
26. } 
27. Else 
28. { 
29. k=k-1 
30. s=s+1 
31. bit[s]=0}} 
32. Return bit array 
 
Example :-4  
Representation of 4 will be = 101 

Algorithm 2(b) 
Fib_add(Zeckendorf representation of b,P) 
Input : Zeckendorf representation of b and P 
Output: bP 
1. For(i=n-2 to 0){ 
2. If  bit[i]=1 
3. (U,V)=(U+P,V) 
4. (U,V)=(U+V,U) 
5. Else 
6. (U,V)=(U+V,U) 
7. Return U} 
Above algorithm will require L-1+n-1 additions where L is 
the length of representation and n is number of 1. 
 

5 COMPARISON 
5.1 Comparative Analysis of proposed approach 
with previous approaches 
 In this section proposed approach is compared with previ-
ous approaches. Here cost is computed for 10 examples. 
The cost obtained for different examples is given in table 
and cost comparison is shown by graph. 
 
5.1.2 Comparative Analysis of NAF and proposed ap-
proach. 

 

 
The above graph is showing cost comparison between NAF 
and proposed approach. 
Horizontal axis is showing examples and vertical axis is 
showing the cost. 
Blue line is showing multiplication. Number of multiplica-
tion is decreasing from NAF to proposed approach. For 
example number of multiplication at 101 NAF is 41M 
which is decreased to 20 M at 101 Proposed. This decrease 
is shown by negative slope of blue line. 
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Similarly Red line is showing decrease in number of squar-
ing. For 101 NAF number of squaring is 17S which is de-
creased to 10S in 101 proposed. 
Purple line is showing increase in number of addition and 
subtraction. For 101 NAF number of addition and subtrac-
tion is 44AS which are increased to 60AS in 101 proposed. 
Green line is showing trend in number of inverse. For 101 
NAF number of inverse is 10I which is same as in pro-
posed.  In some cases number of inverse is decreasing, in 
some cases numbers of inverses is increasing and in some 
cases number of inverse remain same. 
So total decrease is 28 (21 in multiplication, 7 in squaring) 
Total increase is 16 (16 in addition and subtraction)  
Here for 28(total decrease) is large as compared to 16 (total 
increase). 
In most of the cases total decrease will be found large as 
compared to total increase. 
This decrease is based on the number of computations. In 
some cases number of computations will increase but these 
are additions and subtractions. Since addition and subtrac-
tion take small time as compared to multiplication in pro-
cessors, so this approach will remain effeicient in most of 
cases. 
 
5.1.3 Comparative Analysis of wNAF and proposed ap-
proach. 
Here w is taken as 4. In case of w NAF some pre computed 
multiplications are required. For window size w pre computed 
entries will be {±1P, ±2P, ±3P…±.2w-1P-1}. 
So for w=4 Pre computed enteries will be {±1P, ±2P, ±3P, ±5P, 
±7P} 
It will require 1D and 3Afor computation.  
1D+3A=5M+2S+1I+4AS+3(2M+1S+1I+6AS) 
=11M+5S+4I+22AS 
 
Table-4 and fig-2 is showing cost without adding pre computa-
tion cost. 
 

 
 

 
The above graph is showing cost comparison between 
wNAF and proposed approach without considering pre com-
putation cost. 
     Horizontal axis is showing examples and vertical axis is 
showing the cost. 
     In case of wNAF if pre computation cost is not consid-
ered then its number of computations came out small in 
many cases as compared to proposed approach. But if pre 
computed cost is considered it will be high. However the 
computations which are increased are due to addition and 
subtractions in place of multiplications. Since multiplication  
takes more time as compared to addition and subtraction, so 
the proposed approach will remain better in most of the 
cases. 
     Since pre computed cost is only one time cost of a system. 
If enough storage is available w NAF can be preferred over 
other approaches 
 
5.1.4 Comparative Analysis of mbNAF and proposed 
approach 
 
In mbNAF we use a   base set.Here Base set (2,3) is used. 
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The above graph is showing cost comparison between 
mbNAF and proposed approach. 
For example for 63 total decrease is 24 (18 in multiplica-
tion, 6 in squarings) 
Total increase is 12(14 in addition and subtraction)  
Here for 24 (total decrease) is large as compared to 12 (to-
tal increase). 
This decrease in proposed approach is based on the number 
of computations. In some cases number of computations in 
proposed approach will increase but these are additions and 
subtractions. Since addition and subtraction take small time 
as compared to multiplication in processors, so this ap-
proach will remain efficient in most of cases. 
 
5.1.4 Comparison of proposed approach and Zecken-
dorf without multibase concept 
In this section proposed approach is compared with Zecken-
dorf without multibase concept.  
The algorithm used in proposed approach for calculating 
intermediate multiplication is used for finding scalar point 
multiplication in [6]. 
In table 6 Comparison between Zeckendorf without multi-
base concept and proposed approach is shown. 
In fig-4 Comparison is shown in graphical form. 
 

 

 
The above graph is showing the decrease in number of com-
putations. If we use simple zeckendorf representation with-
out multibase concept number of computations will be large. 
However in some cases number of computations came out to 
be large for proposed approach. This is because of less opti-
mal base set. This is limitation of proposed approach that it is 
using random base set due to which sometime cost may in-
crease. 
 
5.2 Comparison of single double and multibase 
versions of proposed approach 
In this section computations are computed for single double 
and multibase. For single base base 2 is used,for double 
base base set (2,3) is used and for multibase base set (2,3,5) 
is used. 

 
     From the table we can analyze that number of computa-
tions are decreasing from single to double base and double to 
triple base. But in some cases like 3750 number of computa-
tions are same for double and triple base. This is due to limi-
tation of the proposed approach that base set is not optimal.  
 

6  CONCLUSION AND FUTURE WORK 
The proposed approach is using Zeckendorf Representation 
of number and multibase concept. 
It removes the doublings completely. It has no overhead of 
precomputed enteries. 
This decreases the number of multiplications and squarings 
in most of cases. The limitation of proposed approach is 
that base set selected is predefined due to which sometimes 

Kirti Chawla et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3159 - 3164 

3163



  

cost get increased as compared to previous approach. It can 
be extended to choose the base set according to the scalar 
whose point multiplication needs to be calculated such that 
base set is optimized and number of precomputations can 
be further reduced. 
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